"The universe of cycles is not exactly one of literal cycles, but rather one of spirals," mused Joe Hellerstein of UC Berkeley.

"Come on, let's all drop some ACID," interjected another.

"It is not that we end up repeating the exact same things, rather even if some patterns seem to repeat, they do so at a higher level, enhanced by the experience gained," continued Joe.

Thus did the Web Scale Data Management panel conclude.

Whether successive generations are made wiser by the ones that have gone before may be argued either way.

The cycle in question was that of developers discovering ACID in the 1960s, i.e. Atomicity, Consistency, Integrity, Durability. Thus did the DBMS come into being. Then DBMSs kept becoming more complex until, as there will be a counter-force to each force, came the meme of key value stores and BASE, no multiple-row transactions, eventual consistency, no query language but scaling to thousands of computers. So now, the DBMS community asks itself what went wrong.

In the words of one panelist, another demonstrated a "shocking familiarity with the subject matter of substance abuse" when he called for the DBMS community to get on a 12 step program and to look where addiction to certain ideas, among which ACID, had brought its life. Look at yourself: The influential papers in what ought to be your space by rights are coming from the OS community: Google Bigtable, Amazon Dynamo, want more? When you ought to drive, you give excuses and play catch up! Stop denial, drop SQL, drop ACID!

The web developers have revolted against the time-honored principles of the DBMS. This is true. Sharded MySQL is not the ticket — or is it? Must they rediscover the virtues of ACID, just like the previous generation did?

Nothing under the sun is new. As in music and fashion, trends keep cycling also in science and engineering.

But seriously, does the full-featured DBMS scale to web scale? Microsoft says the Azure version of SQL server does. Yahoo says they want no SQL but Hadoop and PNUTS.

Twitter, Facebook, and other web names got their own discussion. Why do they not go to serious DBMS vendors for their data but make their own, like Facebook with Hive?

Who can divine the mind of the web developer? What makes them go to memcached, manually sharded MySQL, and MapReduce, walking away from the 40 years of technology invested in declarative query and ACID? What is this highly visible but hard to grasp entity? My guess is that they want something they can understand, at least at the beginning. A DBMS, especially on a cluster, is complicated, and it is not so easy to say how it works and how its performance is determined. The big brands, if deployed on a thousand PCs, would also be prohibitively expensive. But if all you do with the DBMS is single row selects and updates, it is no longer so scary, but you end up doing all the distributed things in a middle layer, and abandoning expressive queries, transactions, and database-supported transparency of location. But at least now you know how it works and what it is good/not good for.

This would be the case for those who make a conscious choice. But by and large the choice is not deliberate; it is something one drifts into: The application gains popularity; the single LAMP can no longer keep all in memory; you need a second MySQL in the LAMP and you decide that users A–M go left and N–Z right (horizontal partitioning). This siren of sharding beckons you and all is good until you hit the reef of re-architecting. Memcached and duct-tape help, like aspirin helps with hangover, but the root cause of the headache lies unaddressed.

The conclusion was that there ought to be something incrementally scalable from the get-go. Low cost of entry and built-in scale-out. No, the web developers do not hate SQL; they just have gotten the idea that it does not scale. But they would really wish it to. So, DBMS people, show there is life in you yet.

Joe Hellerstein was the philosopher and paradigmatician of the panel. His team had developed a protocol-compatible Hadoop in a few months using a declarative logic programming style approach. His claim was that developers made the market. Thus, for writing applications against web scale data, there would have to be data centric languages. Why not? These are discussed in Berkeley Orders Of Magnitude (BOOM).

I come from Lisp myself, way back. I have since abandoned any desire to tell anybody what they ought to program in. This is a bit like religion: Attempting to impose or legislate or ram it on somebody just results in anything from lip service to rejection to war. The appeal exerted by the diverse language/paradigm -isms on their followers seems to be based on hitting a simplification of reality that coincides with a problem in the air. MapReduce is an example of this. PHP is another. A quick fix for a present need: Scripting web servers (PHP) or processing tons of files (MapReduce). The full database is not as quick a fix, even though it has many desirable features. It is also not as easy to tell what happens inside one, so MapReduce may give a greater feeling of control.

Totally self-managing, dynamically-scalable RDF would be a fix for not having to design or administer databases: Since it would be indexed on everything, complex queries would be possible; no full database scans would stop everything. For the mid-size segment of web sites this might be a fit. For the extreme ends of the spectrum, the choice is likely something custom built and much less expressive.

The BOOM rule language for data-centric programming would be something very easy for us to implement, in fact we will get something of the sort essentially for free when we do the rule support already planned.

The question is, can one induce web developers to do logic? The history is one of procedures, both in LAMP and MapReduce. On the other hand, the query languages that were ever universally adopted were declarative, i.e., keyword search and SQL. There certainly is a quest for an application model for the cloud space beyond just migrating apps. We'll see. More on this another time.