
Faceted Views over Large-Scale Linked Data

Orri Erling
OpenLink Software, Inc.
10 Burlington Mall Road

Suite 265
Burlington,MA 01803

U.S.A.
oerling@openlinksw.com

ABSTRACT
Faceted views over structured and semi structured data have
been popular in user interfaces for some years. Deploy-
ing such views of arbitrary linked data at arbitrary scale
has been hampered by lack of suitable back end technol-
ogy. Many ontologies are also quite large, with hundreds of
thousands of classes. We show how we deal with the 221,000
class structure of Yago in an interactive browsing context.

Also, the linked data community has been concerned with
the processing cost and potential for denial of service pre-
sented by public SPARQL end points. This paper shows
how we use Virtuoso for providing timely response on large
data sets through a combined text/facet interface and how
we can enforce a limit on query processing time while still
providing results for arbitrary queries.

Categories and Subject Descriptors
H.5.4 [Information Systems]: Hypertext/Hypermedia;
H.2.8 [Information Systems]: Database Applications

Keywords
Faceted Views, Linked Data, SPARQL, OpenLink Virtuoso

1. INTRODUCTION
The transition of the web from a distributed document

repository into a universal, ubiquitous database requires a
new dimension of scalability for supporting rich user inter-
action. If the web is the database, then it also needs a query
and report writing tool to match. A faceted user interaction
paradigm has been found useful for aiding discovery and
query of variously structured data. Numerous implementa-
tions exist but they are chiefly client side and are limited in
the data volumes they can handle.

At the present time, linked data is well beyond prototypes
and proofs of concept. This means that what was done in
limited specialty domains before must now be done at real
world scale, in terms of both data volume and ontology size.
On the schema, or T box side, there exist many compre-
hensive general purpose ontologies such as Yago[1], Open
CYC[2], Umbel[3] and the Dbpedia[4] ontology and many
domain specific ones, such as [5]. For these to enter into
the user experience, the platform must be able to support
the user’s choice of terminology or terminologies as needed,

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

preferrably without blow up of data and concomitant slow-
down.

Likewise, in the LOD world, many link sets have been
created for bridging between data sets.Whether such linkage
is relevant will depend on the use case. Therefore we provide
fine grained control over which owl:sameAs assertions will
be followed, if any.

Against this background, we discuss how we tackle in-
cremental interactive query composition on arbitrary data
with Virtuoso Cluster[?][6]. At each step, the user is given
a choice of actually existing properties, classes and search
hits for refining a search. The user can form combinations
of text search and structured criteria, including joins to an
arbitrary depth. If queries are precise and select a limited
number of results, the results are complete. If queries would
select tens of millions of results, partial results are shown
instead of counting all properties and class memberships of
the results.

The paper is divided into the following parts:

• SPARQL support for large graphs of subclasses and
subproperties, into the hundreds of thousands, with
no materialization

• SPARQL partial query evaluation for displaying par-
tial results in fixed time

• a facets web service providing an XML interface for
submitting queries, so that the user interface is not
required to parse SPARQL

• a sample web interface for interacting with this

• sample queries and their evaluation times against com-
binations of large LOD data sets

2. PROCESSING LARGE HIERARCHIES
IN SPARQL

Virtuoso has for a long time had built-in superclass and
superproperty inference. This is enabled by specifying the
define input:inference "context" option, where context
is previously declared to be all subclass, subproperty, equiv-
alence, inverse functional property and same as relations
defined in a a given graph. The ontology file is loaded
into its own graph and this is then used to construct the
context. Multiple ontologies and their equivalences can be
loaded into a single graph which then makes another context
which holds the union of the information.



define input:inference "yago"
prefix cy: <http://dbpedia.org/class/yago/>
select distinct ?s1 as ?c1,

(bif:search_excerpt (
bif:vector (’shakespeare’), ?o1 ) ) as ?c2

where {
?s1 ?s1textp ?o1 .
filter (bif:contains (?o1, ’"shakespeare"’)) .
?s1 a cy:Performer110415638 .

} limit 20

This selects all Yago performers that have a property that
contains “Shakespeare” as a whole word.

To see the count of subclasses of Yago performer, we can
do:

prefix cy: <http://dbpedia.org/class/yago/>
select count (*)
from <http://dbpedia.org/yago.owl>
where {

?s rdfs:subClassOf cy:Performer110415638
option (transitive, t_distinct) }

There are 4601 distinct subclasses, including indirect ones.
We see that an implementation that would for each individ-
ual with Shakespeare in some property, of which there are

select count (*) where {
?s ?p ?o .
filter (bif:contains (?o, ’shakespeare’)) }

There are 10267 subjects with Shakespeare mentioned in
some literal.

define input:inference "yago"
prefix cy: <http://dbpedia.org/class/yago/>
select count (*) where {

?s1 a cy:Performer110415638 . }

There are 184885 individuals that belong to some subclass
of performer.

This is the data that the SPARQL compiler must know
in order to have a valid query plan. Since these values will
wildly vary depending on the specific constants in the query,
the actual database must be consulted as we go for all this
information. This is regular query processing technology but
is now specially adapted for deep subclass and subproperty
structures.

Conditions in the queries are not evaluated twice, once
for the cardinality estimate and once for the actual run.
Instead, the cardinality estimate is a rapid sampling of the
index trees that reads at most one leaf page. With this
method, the guiess for the count of performers is 114213,
which is acceptably close to the real number.

For example, in the query for performers with Shake-
speare, the full text criterion is done first, then the class
is retrieved and checked against a memory resident copy of
the Yago hierarchy to determine if performer is a superclass.

However, the query

define input:inference "yago"
prefix cy: <http://dbpedia.org/class/yago/>
select distinct ?s1 as ?c1,

(bif:search_excerpt (
bif:vector (’shakespeare’), ?o1 ) ) as ?c2

where {
?s1 ?s1textp ?o1 .
filter (bif:contains (?o1, ’"shakespeare"’)) .
?s1 a cy:ShakespeareanActors .

}

will start with Shakespearian actors since this is a leaf
class with only 74 instances and then check if the properties
contain Shakespeare and return their search summaries.

In principle, this is common cost based optimization but
is here adapted to deep hierarchies combined with text pat-
terns. An unmodified SQL optimizer would have no possi-
bility of arriving at these results.

The implementation reads the graphs designated as hold-
ing ontologies when first needed and subsequently keeps a
memory based copy of the hierarchy on all servers. This
is used for quick iteration over sub/superclasses or proper-
ties as well as for checking if a given class or property is
a subclass/property of another. Triples with OWL pred-
icates equivalentClass, equivalentProperty and sameAs
are also cached in the same data structure if they occur in
the ontology graphs.

Also cardinality estimates for members of classes near he
root of the class hierarchy take some time since a sample of
each subclass is needed. These are cached for some minutes
in the inference context, so that repeated queries will not
redo the sampling.

3. INVERSE FUNCTIONAL PROPERTIES
AND SAME AS

Specially when navigating social data, as in FOAF[7] and
SIOC[8] spaces, there are many blank nodes that are iden-
tified by properties only. For this, we offer an option for
automatically joining to subjects which share an IFP value
with the subject being processed. For example, the query
for the friends of friends of Kjetil Kjernsmo returns emppty:

select count (?f2) where {
?s a foaf:Person ; ?p ?o ; foaf:knows ?f1 .
?o bif:contains "’kjetil kjernsmo’" .
?f1 foaf:knows ?f2 };

But with the option

define input:inference "b3sifp"
select count (?f2) where {

?s a foaf:Person ; ?p ?o ; foaf:knows ?f1 .
?o bif:contains "’kjetil kjernsmo’" .
?f1 foaf:knows ?f2 };

we get 4022. We note that there are many duplicates
since the data is blank nodes only, with people easily rep-
resented 10 times. The context b3sifp simple declares that
foaf:name and foaf:mbox sha1sum should be treated as in-
verse functional properties (IFP). The name is not an IFP
in the actual sense but treating it as such for the purposes
of this one query makes sense, otherwise nothing would join.

This option is controlled by the choice of the inference



context, which is selecteable in the interface duscussed be-
low.

The issues of run time vs precomputed identity inference
through IFP’s and owl:sameAs are discussed in much more
detail at[9].

Our general position is that identity criteria are highly
application specific and thus we offer the full spectrum
of choice between run time and precomputing. Further,
weaker identity statements than sameness are difficult to
use in queries, thus we prefer identity with semantics of
owl:sameAs but make this an option that can be turned on
and off query by query.

4. QUERY EVALUATION TIME LIMITS
When scaling the Linked Data model, we have to take it

as a given that the workload will be unexpected and that the
query writers will often be unskilled in databases. Insofar
possible, we wish to promote the forming of a culture of
creative reuse of data. To this effect, even poorly formulated
questions deserve an answer that is better than just timeout.

If a query produces a steady stream of results, interrupting
it after a certain quota is simple. However, most interesting
queries do not work in this way. They contain aggregation,
sorting, maybe transitivity.

When evaluating a query with a time limit in a cluster
setup, all nodes monitor the time left for the query. When
dealing with a potentially partial query to begin with, there
is little point in transactionality, thus timeouts will occur
approximately at the same time in all places, lock waiting
not being involved. A read committed query will never block
since it will see the before-image of any transactionally up-
dated row.

Thus, when having a partitioned count, for example, we
expect all the partitions to time out around the same time
and send a ready message with the timeout information to
the cluster node coordinating the query. This timeout differs
from a run time error in that it leaves the query state intact
on all participating nodes. This allows the timeout handling
to come fetch any accumulated aggregates.

Let us consider the query for the top 10 classes of things
with “Shakespeare” in some literal. This is typical of the
workload generated by the faceted browsing web service:

define input:inference "yago"
select ?c count (*) where {

?s a ?c ; ?p ?o .
?o bif:contains "shakespeare" .

} group by ?c order by desc 2 limit 10

On the first execution with an entirely cold cache, it times
out after 2 seconds and returns:

yago:class/yago/Entity100001740 566
yago:class/yago/PhysicalEntity100001930 452
yago:class/yago/Object100002684 452
yago:class/yago/Whole100003553 449
yago:class/yago/Organism100004475 375
yago:class/yago/LivingThing100004258 375
yago:class/yago/CausalAgent100007347 373
yago:class/yago/Person100007846 373
yago:class/yago/Abstraction100002137 150
yago:class/yago/Communicator109610660 125

The next repeat gets about double the counts, starting
with 1291 entities.

With a warm cache, the query finishes in about 300 ms (4
core Xeon, Virtuoso 6 Cluster) and returns:

yago:class/yago/Entity100001740 13329
yago:class/yago/PhysicalEntity100001930 10423
yago:class/yago/Object100002684 10408
yago:class/yago/Whole100003553 10210
yago:class/yago/LivingThing100004258 8868
yago:class/yago/Organism100004475 8868
yago:class/yago/CausalAgent100007347 8853
yago:class/yago/Person100007846 8853
yago:class/yago/Abstraction100002137 3284
yago:class/yago/Entertainer109616922 2356

The well known fact is that running from memory is thou-
sands of times faster than from disk.

The query plan begins with the text search. The subjects
with “Shakespeare” in some property get dispatched to the
partition that holds their class. Since all partitions know the
class hierarchy, the superclass inference runs in parallel, as
does the aggregation of the group by. When all parttitions
have finished, the process coordinating the query fetches the
partial aggregates, adds them up and sorts them by count.

If a timeout occurs, it will most likely occur where the
classes of the text matches are being retrieved. When this
happens, this part of the query is reset, but the aggregate
states are left in place. The process coordinating the query
then goes on as if the aggregates had completed. f there are
many levels of nested aggregates, each timeout terminates
the innermost active, thus a query is guaranteed to return in
no more than n timeouts, where n is the number of nested
aggregations/subqueries.

5. FACETS WEB SERVICE
The Virtuoso Facets web service is a general purpose RDF

query facility for facet based browsing. t takes an XML
description of the view desired and generates the reply as
an XML tree containing the requested data. The user agent
or a local web page can use XSLT for rendering this for the
end user. The selection of facets and values is represented as
an XML tree. The rationale for this is the fact that such a
representation is easier to process in an application than the
SPARQL source text or a parse tree of SPARQL and more
compactly captures the specific subset of SPARQL needed
for faceted browsing. The web service returns the SPARQL
source text also, thus this can serve as a basis for hand-
crafted queries.

The query has the top level element <query>. The child
elements of this represents conditions pertaining to a single
subject. A join is expressed with the property or property-
of element. This has in turn children which state conditions
on a property of the first subject. Property and property-
of elements can be nested to an arbitrary depth and many
can occur inside one containing element. In this way, tree-
shaped structures of joins can be expressed.

Expressing more complex relationships, such as intermedi-
ate grouping, subqueries, arithmetic or such requires writing
the query in SPARQL. The XML format is for easy auto-
matic composition of queries needed for showing facets, not
a replacement for SPARQL.

Consider composing a map of locations involved with



Napoleon. The XML representation of the search is edited
by simple user actions.

• Enter in the search form “napoleon”:

<query inference="" same-as="" view3=""
s-term="e" c-term="type">
<text>napoleon</text>
<view type="text" limit="20" offset="" />

</query>

• Select the “types” view:

<query inference="" same-as="" view3=""
s-term="e" c-term="type">
<text>napoleon</text>
<view type="classes" limit="20" offset="0"
location-prop="0" />

</query>

• Choose “MilitaryConflict” type:

<query inference="" same-as="" view3=""
s-term="e" c-term="type">
<text>napoleon</text>
<view type="classes" limit="20" offset="0"
location-prop="0" />

<class iri="yago:ontology/MilitaryConflict" />
</query>

• Choose “NapoleonicWars”:

<query inference="" same-as="" view3=""
s-term="e" c-term="type">
<text>napoleon</text>
<view type="classes" limit="20" offset="0"
location-prop="0" />

<class iri="yago:ontology/MilitaryConflict" />
<class iri="yago:class/yago/NapoleonicWars" />

</query>

• Select “any location” in the select list beside the
“map” link, then hit “map” link:

<query inference="" same-as="" view3=""
s-term="e" c-term="type">
<text>napoleon</text>
<class iri="yago:ontology/MilitaryConflict" />
<class iri="yago:class/yago/NapoleonicWars" />
<view type="geo" limit="20" offset="0"
location-prop="any" />

</query>

This last XML fragment corresponds to the below SPARQL
text:

select ?location as ?c1 ?lat1 as ?c2 ?lng1 as ?c3
where {

?s1 ?s1textp ?o1 .
filter (bif:contains (?o1, ’"napoleon"’)) .
?s1 a <yago:ontology/MilitaryConflict> .
?s1 a <yago:class/yago/NapoleonicWars> .
?s1 ?anyloc ?location .
?location geo:lat ?lat1 ; geo:long ?lng1 .

}
limit 20 offset 0

The query takes all subjects with some literal property
with “Napoleon” in it, then filters for military conflicts and
Napoleonic wars, then takes all objects related to these
where the related object has a location. The map has the
objects and their locations.

Figure 1: The displayed result

6. VOID DISCOVERABILITY
A long awaited addition to the LOD cloud is the Vocabu-

lary of Interlinked Data (VoID)[10]. Virtuoso automatically
generates VoID descriptions of data sets it hosts.

Virtuoso incorporates an SQL function rdf void gen
which returns a Turtle representation of a given graph’s
VoID statistics.

7. TEST SYSTEM AND DATA
The test system is 2 8 core Xeon 5345 (2.33GHz) servers

with 16G RAM and 4 disks each. The machines are con-
nected by 2x 1Gbit ethernet. The software is Virtuoso 6
Cluster. The Virtuoso server is split into 16 partitions, 8
for each machine. Each parrtition is managed by a separate
server process.

The test database has the following data sets:

• Dbpedia 3.2

• Musicbrainz

• Bio2RDF

• Neurocommons

• Uniprot

• Ping The Semantic Web (1.6 million miscellaneous files
from http://www.pingthesemanticweb.com).

Ontologies:

• Yago

• Open CYC

• Umbel

• Dbpedia



8. FUTUREWORK
All the functions discussed above are presently being pro-

ductized for delivery with Virtuoso 6, so that single servers
are open source and clusters commercial only. The most
relevant future work is thus final debugging and tuning of
existing functionality.

The technology will be first commercially used as a plat-
form for an Amazon EC2 offering of the whole LOD cloud
on a cluster of servers. This complements the existing line
of data sets pre-packaged by OpenLink[11].

For more sophisticated, also editable user facing function-
ality, OpenLink is presently working with the developers of
OntoWiki[12] on integrating the functionality discussed here
into OntoWiki as a new large-scale back-end. From this de-
velopement, we expect to have the functional equivalent of
Freebase[13], except with more data, working with open,
standard data models, being more integrable and above all
having a full range of deployment options. This means any-
thing from the desktop to the data center with either soft-
ware as service or installation at end user sites as options.

For better relevance of results, we are planning to look
into applying technologies from web serch to the data web,
for example ranking results by a form of page rank. We
expect having semantics associated with links to open new
possibilities in this domain.

9. CONCLUSIONS
We have shown that we can support a point and click in-

terface for interactive query composition against a database
of well over a billlion triples. We have also shown that it
is possible to create complex sequences of joins with a few
clicks, while constantly seeing what types of data are avail-
able for selecting.

Packaging this as a web service is justified, as we expect
most applications to require domain specific tailoring in nav-
igation, preferred data display formats and the like. Thus
we keep the kernel and our demo interface clearly separate.

The principal technical conclusion from this is the abso-
lutely central role of a good query cost model. Specifically,
the cost model must be aware of class and property hierar-
chies, must have a cardinality estimate for text conditions
and must work off the data itself. The range of queries and
joins is too diverse and the data distribution too uneven for
histograms or other precomputed statistics to work well.

10. REFERENCES
[1] Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: A

Core of Semantic Knowledge Unifying WordNet and
Wikipedia. WWW2007, ACM
978-1-59593-654-7/07/0005.

[2] Overview of OpenCyc.
http://www.cyc.com/cyc/opencyc/overview

[3] UMBEL Ontology, Vol. 1: Technical Documentation,
TR 08-08-28-A1.
http://www.umbel.org/doc/UMBELOntology vA1.pdf

[4] Auer, S.; Bizer, C.; Lehmann, J.; Kobilarov, G.;
Cyganiak, R.; Ives, Z.: DBpedia: A Nucleus for a Web
of Open Data. In Aberer et al. (Eds.): The Semantic
Web, 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC
2007, Busan, Korea, November 11-15, 2007. LNCS 4825
Springer 2007, ISBN 9783-540762973.

[5] The National Center for Biomedical Ontology:
Resources. http://bioontology.org/repositories.html

[6] OpenLink Software, Inc. Virtuoso 6 FAQ.
http://virtuoso.openlinksw.com/Whitepapers/
html/Virt6FAQ.html

[7] Brickley, D.; Miller, L.: FOAF Vocabulary Specification
0.91. http://xmlns.com/foaf/spec/

[8] Bojars, U.; Breslin, J.G. (eds.): SIOC Core Ontology
Specification http://rdfs.org/sioc/spec/

[9] Erling, O.: “E Pluribus Unum”, or “Inversely
Functional Identity”, or “Smooshing Without the
Stickiness”.
http://www.openlinksw.com/dataspace/
oerling/weblog/Orri%20Erling’s%20Blog/1498

[10] Hausenblas, M.: Discovery and Usage of Linked
Datasets on the Web of Data. NodMag #4. Available
at http://www.talis.com/nodalities/
pdf/nodalities issue4.pdf

[11] OpenLink Software, Inc. Virtuoso Universal Server
(Cloud Edition) AMI for EC2.
http://virtuoso.openlinksw.com/wiki/main/
Main/VirtuosoEC2AMI

[12] Auer, S.; Dietzold, S.; Riechert, T.: OntoWiki A Tool
for Social, Semantic Collaboration. 5th International
Semantic Web Conference, Nov 5th–9th, Athens, GA,
USA. In I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273,
pp. 736-749, 2006. Springer-Verlag Berlin Heidelberg
2006.

[13] Metaweb Technologies, Inc.: What is Freebase?
http://www.freebase.com/view/en/what is freebase


