The Trillion-Dollar Shift to Agentic

Software Architecture

Moving beyond the Monolith: How LLMs and Agents o
are restructuring the software economy. ECOSYSTEM

FLEXIBLE
AGENTS

LLM
INTEGRATION

A

oo X

The software industry is undergoing a | NS £, —~
VIQn . 8 _ 3 ﬂ -‘d . |

AUTONOMOUS
SERVICES

T,

structural redesign comparable to the
shift to Cloud or Mobile. We are
moving from rigid, monolithic
applications to flexible, agent-driven
ecosystems.

This document outlines the
architectural imperative for technical
decision-makers and investors.

&1 NotebookLM

The GUI is the tip of the iceberg; beneath

lies a mountain of technical debt

an - The Interface: WIMP
/| (Windows, Icons,
Menus, Pointers)

e—— The Reality:
Monolithic Architecture
& Accumulated

Tightly Coupled ———e 1™ :

Modules s 4 | Technical Debt

Legacy Codebases ————— |

(COBOL, Fortran) +—— |nconsistent Data Models
Undocumented APls ————— F*erfc:_r manrfe
Bottlenecks
Security Patches —————»

& Workarounds

e————— Dependency Hell

e———— Hroken Integration Points

The Situation Analysis

WIMP interfaces dramatically
improved usability, concentrating
value in platforms like Windows and
macOS. However, they obscured the
architectural realities beneath.

The Hidden Cost

While Unix/Linux backends relied on
command lines, user-facing software
became tightly coupled monoliths to
support the GUL.

Open standards promised
modularity, but API inconsistencies
led developers to make pragmatic
compromises.

The Result

Hard-to-maintain systems where

easier usability led to harder
maintenance.

& NotebookLM

Large Language Models break the GUI monopoly

Q€
o
Oo

Human User

Multimodal & Multilingual

LLMs introduce natural language as
a new UI/UX layer, accessible to
everyone.

Natural Language
Interface (LLMs)

Restricted
~—.__Options

<

The Paradigm Shift

Natural language is no longer just for
using software; it is for building and
orchestrating it.

System Logic &
Orchestration

Direct Access

This allows interaction with logic
directly, bypassing rigid interface
constraints and unlocking the ability
to describe intent rather than
navigate menus.

& NotebooklLM

We are returning to the ideal of loosely coupled
software—this time, it works

Tightly Integrated Monoliths Dynamic Composition

Rigid structures LLMs allow
where changes components to
require massive connect
refactoring. dynamically

based on context.

The shift to LLMs revives the architectural ideal of software assembled as loosely coupled components connected via open
standards. Benefits include reduced technical debt, improved adaptability, and systems that evolve rather than stagnate.

&1 NotebookLM

Software is no longer hard-coded; it is orchestrated

Tools: Task execution
components that perform
specific operations.

Skills: Workflow modules
encapsulating reusable task
sequences and domain logic.

Data Spaces:
: Databases, knowledge graphs,
1—Rg= filesystems,and APlIs.

Agents act as the glue (orchestrators), dynamically coordinating these three elements to deliver
outcomes aligned with user intent, rather than executing rigid application logic.

& NotebookLM

From writing lines of code
to describing intent

Development is shifting from writing
code line-by-line to describing intent and Claude OpenAl

assembling capabilities. | Code | Codex

The New Workflow: Users, domain

experts, and developers collaborate with :

coding agents.

Gemini
Code Assist

\/

Tools that began in the command line are now integrating into
graphical environments, democratising access.

Mistral
Vibe

The Outcome: Software becomes a
“composite system” where humans
collaborate with agents to assemble
capabilities.

& NotebooklLM

Agentic infrastructure is to software what GPUs are to Al

A\ /4
Infrastructure Hardware Infrastructure Software

Data Centres: Redesigned for Parallel Processing Architecture: Redesigned for Agentic Orchestration

7 \N

The build-out of GPU infrastructure forced a global redesign of data centres. A similar shift is now unfolding in software architecture.

This is an infrastructural imperative: existing monoliths cannot compete with the speed and adaptability of agent-driven systems.

& NotebookLM

Broadening participation and crushing technical debt

Unified Process

|

Product :
Specification Programming

Deployment

Evolution

Democratisation

Markdown and natural language act
as the new assembly language,
allowing domain experts to join the
development process.

g =) A

—_—

Efficiency

Multiple stages of development are
compressed into a unified descriptive
process. Traditional hand-offs and
siloed expertise are eliminated.

Economic ROI

Reliance on monoliths diminishes,
reducing the accumulation of
value-eroding technical debt.

=,

&1 NotebookLM

Horizontally focused ISVs must evolve into
‘Agent-Ready’ service layers

Transition Strategy

Hardwired
DEMS Bindings

Step 1: Expose Core Functions Step 2: Publish Tools Step 3: Package Skills Step 4: Modernise Data Access
Use OpenAPI to make Use the Model Context Protocol Deploy capabilities via the Move away from hardwired
functionality accessible to (MCP) so agents can discover emerging SKILLs.md standard. DBMS bindings to portable
external systems. services dynamically. access viaODBC/JDBC.

Takeaway: Applications must become reusable toolkits for agent orchestration rather than isolated products.

& NotebooklLM

VARs move from System Integrators to
Orchestrators of Domain Intelligence

The opportunity lies in packaging
l domain expertise into agent-enabled

’ solutions.

Strategic Blueprint:
Digital Skill

1. Create APIs over industry systems of record.

Z i 9 :' 2. Publish vertical tools via MCP.
@ ot - 3. Package domain workflows as Skills for reuse.

4. Decouple solutions from specific databases.

& NotebooklLM

OpenLink provides a vertically integrated
portfolio for the Agentic era

-

OpenLink Al Layer (OPAL)

Tooling for creating agents using
Markdown (Agents.md).

-

Virtuoso

Semantic Harmonisation layer loosely
coupled with data spaces.

ODBC/JDBC Drivers

High-performance connectivity to
systems of record and data lakes.

|

&1 NotebookLM

Connecting the dots between Data, Semantics, and Agents

OPAL Stored
(OpenLink Personal Assistant) % DGEdeES
T APIs

APIs

o)L (L
3=
- @D
Y

OPAL uses Markdown-defined agents to orchestrate tools (Stored
APIs Procedures, APIs) and access harmonised data in Virtuoso.
A NotebookLM

v

Modernising Model-View-Controller for the AI Age

Diagram A: Classic MVC Diagram B: Agentic MVC

Controller
The Agent

(Orchestrating workflows
based on intent)

Loosely Coupled Data Dynamic Generation
(Integrated via semantic harmonisation) (Generated/adapted by the Agent)

View

In the agentic era, the Controller becomes an autonomous Agent, the View becomes dynamic, and the Model becomes a semantic data space.

| £ NotebookLM

The Tr|II|on Dollar Opportunlty

We are witnessing the end of the monolithic era and the rise of the agentic ecosystem. Al agents are
the new orchestration layer that binds modular components into adaptive systems.

Takeaway: Those who adopt open standards (OpenAPI, MCP) and agent-ready architectures will
capture the value. Those clinging to the ‘Iceberg’ of monolithic debt will struggle to evolve.

&1 NotebookLM

Deep Dive Resources

Y General Reading

Software Componentization in the Age of Al: How LLMs Are Reshaping
Development

LLMs as Generic RDF Clients: Understanding the semantic connection
% Tooling Documentation

About Claude Code (Anthropic)

About OpenAl Codex

Mistral Vibe

Gemini Code Assist

% OpenLink Technology

OPAL (opal.openlinksw.com)
Virtuoso Universal Server
UDA Drivers

& NotebooklLM

