"Physician, heal thyself," it is said. We profess to say what the messaging of the semantic web ought to be, but is our own perfect?

I will here engage in some critical introspection as well as amplify on some answers given to Virtuoso-related questions in recent times.

I use some conversations from the Vienna Linked Data Practitioners meeting as a starting point. These views are mine and are limited to the Virtuoso server. These do not apply to the ODS (OpenLink Data Spaces) applications line, OAT (OpenLink Ajax Toolkit), or ODE (OpenLink Data Explorer).

"It is not always clear what the main thrust is, we get the impression that you are spread too thin," said Sören Auer.

Well, personally, I am all for core competence. This is why I do not participate in all the online conversations and groups as much as I could, for example. Time and energy are critical resources and must be invested where they make a difference. In this case, the real core competence is running in the database race. This in itself, come to think of it, is a pretty broad concept.

This is why we put a lot of emphasis on Linked Data and the Data Web for now, as this is the emerging game. This is a deliberate choice, not an outside imperative or built-in limitation. More specifically, this means exposing any pre-existing relational data as linked data plus being the definitive RDF store.

We can do this because we own our database and SQL and data access middleware and have a history of connecting to any RDBMS out there.

The principal message we have been hearing from the RDF field is the call for scale of triple storage. This is even louder than the call for relational mapping. We believe that in time mapping will exceed triple storage as such, once we get some real production strength mappings deployed, enough to outperform RDF warehousing.

There are also RDF middleware things like RDF-ization and demand-driven web harvesting (i.e, the so-called Sponger). These are SPARQL options, thus accessed via standard interfaces. We have little desire to create our own languages or APIs, or to tell people how to program. This is why we recently introduced Sesame- and Jena-compatible APIs to our RDF store. From what we hear, these work. On the other hand, we do not hesitate to move beyond the standards when there is obvious value or necessity. This is why we brought SPARQL up to and beyond SQL expressivity. It is not a case of E3 (Embrace, Extend, Extinguish).

Now, this message could be better reflected in our material on the web. This blog is a rather informal step in this direction; more is to come. For now we concentrate on delivering.

The conventional communications wisdom is to split the message by target audience. For this, we should split the RDF, relational, and web services messages from each other. We believe that a challenger, like the semantic web technology stack, must have a compelling message to tell for it to be interesting. This is not a question of research prototypes. The new technology cannot lack something the installed technology takes for granted.

This is why we do not tend to show things like how to insert and query a few triples: No business out there will insert and query triples for the sake of triples. There must be a more compelling story — for example, turning the whole world into a database. This is why our examples start with things like turning the TPC-H database into RDF, queries and all. Anything less is not interesting. Why would an enterprise that has business intelligence and integration issues way more complex than the rather stereotypical TPC-H even look at a technology that pretends to be all for integration and all for expressivity of queries, yet cannot answer the first question of the entry exam?

The world out there is complex. But maybe we ought to make some simple tutorials? So, as a call to the people out there, tell us what a good tutorial would be. The question is more about figuring out what is out there and adapting these and making a sort of compatibility list. Jena and Sesame stuff ought to run as is. We could offer a webinar to all the data web luminaries showing how to promote the data web message with Virtuoso. After all, why not show it on the best platform?

"You are arrogant. When I read your papers or documentation, the impression I get is that you say you are smart and the reader is stupid."

We should answer in multiple parts.

For general collateral, like web sites and documentation:

The web site gives a confused product image. For the Virtuoso product, we should divide at the top into

  • Data web and RDF - Host linked data, expose relational assets as linked data;
  • Relational Database - Full function, high performance, open source, Federated/Virtual Relational DBMS, expose heterogeneous RDB assets through one point of contact for integration;
  • Web Services - access all the above over standard protocols, dynamic web pages, web hosting.

For each point, one simple statement. We all know what the above things mean?

Then we add a new point about scalability that impacts all the above, namely the Virtuoso version 6 Cluster, meaning that you can do all these things at 10 to 1000 times the scale. This means this much more data or in some cases this much more requests per second. This too is clear.

Far as I am concerned, hosting Java or .NET does not have to be on the front page. Also, we have no great interest in going against Apache when it comes to a web server only situation. The fact that we have a web listener is important for some things but our claim to fame does not rest on this.

Then for documentation and training materials: The documentation should be better. Specifically it should have more of a how-to dimension since nobody reads the whole thing anyhow. About online tutorials, the order of presentation should be different. They do not really reflect what is important at the present moment either.

Now for conference papers: Since taking the data web as a focus area, we have submitted some papers and had some rejected because these do not have enough references and do not explain what is obvious to ourselves.

I think that the communications failure in this case is that we want to talk about end to end solutions and the reviewers expect research. For us, the solution is interesting and exists only if there is an adequate functionality mix for addressing a specific use case. This is why we do not make a paper about query cost model alone because the cost model, while indispensable, is a thing that is taken for granted where we come from. So we mention RDF adaptations to cost model, as these are important to the whole but do not find these to be the justification for a whole paper. If we made papers on this basis, we would have to make five times as many. Maybe we ought to.

"Virtuoso is very big and very difficult"

One thing that is not obvious from the Virtuoso packaging is that the minimum installation is an executable under 10MB and a config file. Two files.

This gives you SQL and SPARQL out of the box. Adding ODBC and JDBC clients is as simple as it gets. After this, there is basic database functionality. Tuning is a matter of a few parameters that are explained on this blog and elsewhere. Also, the full scale installation is available as an Amazon EC2 image, so no installation required.

Now for the difficult side:

Use SQL and SPARQL; use stored procedures whenever there is server side business logic. For some time critical web pages, use VSP. Do not use VSPX. Otherwise, use whatever you are used to — PHP or Java or anything else. For web services, simple is best. Stick to basics. "The engineer is one who can invent a simple thing." Use SQL statements rather than admin UI.

Know that you can start a server with no database file and you get an initial database with nothing extra. The demo database, the way it is produced by installers is cluttered.

We should put this into a couple of use case oriented how-tos.

Also, we should create a network of "friendly local virtuoso geeks" for providing basic training and services so we do not have to explain these things all the time. To all you data-web-ers out there — please sign up and we will provide instructions, etc. Contact Yrjänä Rankka (ghard[at-sign]openlinksw.com), or go through the mailing lists; do not contact me directly.

"OK, we understand that you may be good at the large end of the spectrum but how do you reconcile this with the lightweight or embedded end, like the semantic desktop?"

Now, what is good for one end is usually good for the other. Namely, a database, no matter the scale, needs to have space efficient storage, fast index lookup, and correct query plans. Then there are things that occur only at the high-end, like clustering, but these are separate things. For embedding, the initial memory footprint needs to be small. With Virtuoso, this is accomplished by leaving out some 200 built-in tables and 100,000 lines of SQL procedures that are normally in by default, supporting things such as DAV and diverse other protocols. After all, if SPARQL is all one wants these are not needed.

If one really wants to do one's server logic (like web listener and thread dispatching) oneself, this is not impossible but requires some advice from us. On the other hand, if one wants to have logic for security close to the data, then using stored procedures is recommended; these execute right next to the data, and support inline SPARQL and SQL. Depending on the license status of the other code, some special licensing arrangements may apply.

We are talking about such things with different parties at present.

"How webby are you? What is webby?"

"Webby means distributed, heterogeneous, open; not monolithic consolidation of everything."

We are philosophically webby. We come from open standards; we are after all called OpenLink; our history consists of connecting things. We believe in choice — the user should be able to pick the best of breed for components and have them work together. We cannot and do not wish to force replacement of existing assets. Transforming data on the fly and connecting systems, leaving data where it originally resides, is the first preference. For the data web, the first preference is a federation of independent SPARQL end points. When there is harvesting, we prefer to do it on demand, as with our Sponger. With the immense amount of data out there we believe in finding what is relevant when it is relevant, preferably close at hand, leveraging things like social networks. With a data web, many things which are now siloized, such as marketplaces and social networks, will return to the open.

Google-style crawling of everything becomes less practical if one needs to run complex ad hoc queries against the mass of data. For these types of scenarios, if one needs to warehouse, the data cloud will offer solutions where one pays for database on demand. While we believe in loosely coupled federation where possible, we have serious work on the scalability side for the data center and the compute-on-demand cloud.

"How does OpenLink see the next five years unfolding?"

Personally, I think we have the basics for the birth of a new inflection in the knowledge economy. The URI is the unit of exchange; its value and competitive edge lie in the data it links you with. A name without context is worth little, but as a name gets more use, more information can be found through that name. This is anything from financial statistics, to legal precedents, to news reporting or government data. Right now, if the SEC just added one line of markup to the XBRL template, this would instantaneously make all SEC-mandated reporting into linked data via GRDDL.

The URI is a carrier of brand. An information brand gets traffic and references, and this can be monetized in diverse ways. The key word is context. Information overload is here to stay, and only better context offers the needed increase in productivity to stay ahead of the flood.

Semantic technologies on the whole can help with this. Why these should be semantic web or data web technologies as opposed to just semantic is the linked data value proposition. Even smart islands are still islands. Agility, scale, and scope, depend on the possibility of combining things. Therefore common terminologies and dereferenceability and discoverability are important. Without these, we are at best dealing with closed systems even if they were smart. The expert systems of the 1980s are a case in point.

Ever since the .com era, the URL has been a brand. Now it becomes a URI. Thus, entirely hiding the URI from the user experience is not always desirable. The URI is a sort of handle on the provenance and where more can be found; besides, people are already used to these.

With linked data, information value-add products become easy to build and deploy. They can be basically just canned SPARQL queries combining data in a useful and insightful manner. And where there is traffic there can be monetization, whether by advertizing, subscription, or other means. Such possibilities are a natural adjunct to the blogosphere. To publish analysis, one no longer needs to be a think tank or media company. We could call this scenario the birth of a meshup economy.

For OpenLink itself, this is our roadmap. The immediate future is about getting our high end offerings like clustered RDF storage generally available, both on the cloud and for private data centers. Ourselves, we will offer the whole Linked Open Data cloud as a database. The single feature to come in version 2 of this is fully automatic partitioning and repartitioning for on-demand scale; now, you have to choose how many partitions you have.

This makes some things possible that were hard thus far.

On the mapping front, we go for real-scale data integration scenarios where we can show that SPARQL can unify terms and concepts across databases, yet bring no added cost for complex queries. Enterprises can use their existing warehouses and have an added level of abstraction, the possibility of cross systems interlinking, the advantages of using the same taxonomies and ontologies across systems, and so forth.

Then there will be developments in the direction of smarter web harvesting on demand with the Virtuoso Sponger, and federation of heterogeneous SPARQL end points. The federation is not so unlike clustering, except the time scales are 2 orders of magnitude longer. The work on SPARQL end point statistics and data set description and discovery is a good development in the community.

Then there will be NLP integration, as exemplified by the Open Calais linked data wrapper and more.

Can we pull this off or is this being spread too thin? We know from experience that all this can be accomplished. Scale is already here; we show it with the billion triples set. Mapping is here; we showed it last in the Berlin Benchmark. We will also show some TPC-H results after we get a little quiet after the ISWC event. Then there is ongoing maintenance but with this we have shown a steady turnaround and quick time to fix for pretty much anything.