At the start of 2010, I wrote that 2010 would be the year when RDF became performance- and cost-competitive with relational technology for data warehousing and analytics. More specifically, RDF would shine where data was heterogenous and/or where there was a high frequency of schema change.

I will now discuss what we have done towards this end in 2010 and how you will gain by this in 2011.

At the start of 2010, we had internally demonstrated 4x space efficiency gains from column-wise compression and 3x loop join speed gains from vectored execution. To recap, column-wise compression means a column-wise storage layout where values of consecutive rows of a single column are consecutive in memory/disk and are compressed in a manner that benefits from the homogenous data type and possible sort order of the column. Vectored execution means passing large numbers of query variable bindings between query operators and possibly sorting inputs to joins for improving locality. Furthermore, always operating on large sets of values gives extra opportunities for parallelism, from instruction level to threads to scale out.

So, during 2010, we integrated these technologies into Virtuoso, for relational- and graph-based applications alike. Further, even if we say that RDF will be close to relational speed in Virtuoso, the point is moot if Virtuoso's relational speed is not up there with the best of analytics-oriented RDBMS. RDF performance does rest on the basis of general-purpose database performance; what is sauce for the goose is sauce for the gander. So we reimplemented HASH JOIN and GROUP BY, and fine-tuned many of the tricks required by TPC-H. TPC-H is not the sole final destination, but it is a step on the way and a valuable checklist for what a database ought to do.

At the Semdata workshop of VLDB 2010 we presented some results of our column store applied to RDF and relational tasks. As noted in the paper, the implementation did demonstrate significant gains over the previous row-wise architecture but was not yet well optimized, so not ready to be compared with the best of the relational analytics world. A good part of the fall of 2010 went into optimizing the column store and completing functionality such as transaction support with columns.

A lot of this work is not specifically RDF oriented, but all of this work is constantly informed by the specific requirements of RDF. For example, the general idea of vectored execution is to eliminate overheads and optimize CPU cache and other locality by doing single query operations on arrays of operands so that the whole batch runs more or less in CPU cache. Are the gains not lost if data is typed at run time, as in RDF? In fact, the cost of run-time-typing turns out to be small, since data in practice tends to be of homogenous type and with locality of reference in values. Virtuoso's column store implementation resembles in broad outline other column stores like Vertica or VectorWise, the main difference being the built-in support for run-time heterogenous types.

The LOD2 EU FP 7 project started in September 2010. In this project OpenLink and the celebrated heroes of the column store, CWI of MonetDB and VectorWise fame, represent the database side.

The first database task of LOD2 is making a survey of the state of the art and a round of benchmarking of RDF stores. The Berlin SPARQL Benchmark (BSBM) has accordingly evolved to include a business intelligence section and an update stream. Initial results from running these will become available in February/March, 2011. The specifics of this process merit another post; let it for now be said that benchmarking is making progress. In the end, it is our conviction that we need a situation where vendors may publish results as and when they are available and where there exists a well defined process for documenting and checking results.

LOD2 will continue by linking the universe, as I half-facetiously put it on a presentation slide. This means alignment of anything from schema to instance identifiers, with and without supervision, and always with provenance, summarization, visualization, and so forth. In fact, putting it this way, this gets to sound like the old chimera of generating applications from data or allowing users to derive actionable intelligence from data of which they do not even know the structure. No, we are not that unrealistic. But we are moving toward more ad-hoc discovery and faster time to answer. And since we provide an infrastructure element under all this, we want to do away with the "RDF tax," by which we mean any significant extra cost of RDF compared to an alternate technology. To put it another way, you ought to pay for unpredictable heterogeneity or complex inference only when you actually use them, not as a fixed up-front overhead.

So much for promises. When will you see something? It is safe to say that we cannot very well publish benchmarks of systems that are not generally available in some form. This places an initial technology preview cut of Virtuoso 7 with vectored execution somewhere in January or early February. The column store feature will be built in, but more than likely the row-wise compressed RDF format of Virtuoso 6 will still be the default. Version 6 and 7 databases will be interchangeable unless column-store structures are used.

For now, our priority is to release the substantial gains that have already been accomplished.

After an initial preview cut, we will return to the agenda of making sure Virtuoso is up there with the best in relational analytics, and that the equivalent workload with an RDF data model runs as close as possible to relational performance. As a first step this means taking TPC-H as is, and then converting the data and queries to the trivially equivalent RDF and SPARQL and seeing how it goes. In the September paper we dabbled a little with the data at a small scale but now we must run the full set of queries at 100GB and 300GB scales, which come to about 14 billion and 42 billion triples, respectively. A well done analysis of the issues encountered, covering similarities and dissimilarities of the implementation of the workload as SQL and SPARQL, should make a good VLDB paper.

Database performance is an entirely open-ended quest and the bag of potentially applicable tricks is as good as infinite. Having said this, it seems that the scales comfortably reached in the TPC benchmarks are more than adequate for pretty much anything one is likely to encounter in real world applications involving comparable workloads. Businesses getting over 6 million new order transactions per minute (the high score of TPC-C) or analyzing a warehouse of 60 billion orders shipped to 6 billion customers over 7 years (10000GB or 10TB TPC-H) are not very common if they exist at all.

The real world frontier has moved on. Scaling up the TPC workloads remains a generally useful exercise that continues to contribute to the state of the art but the applications requiring this advance are changing.

Someone once said that for a new technology to become mainstream, it needs to solve a new class of problem. Yes, while it is a preparatory step to run TPC-H translated to SPARQL without dying of overheads, there is little point in doing this in production since SQL is anyway likely better and already known, proven, and deployed.

The new class of problem, as LOD2 sees it, is the matter of web-wide cross-organizational data integration. Web-wide does not necessarily mean crawling the whole web, but does tend to mean running into significant heterogeneity of sources, both in terms of modeling and in terms of usage of more-or-less standard data models. Around this topic we hear two messages. The database people say that inference beyond what you can express in SQL views is theoretically nice but practically not needed; on the other side, we hear that the inference now being standardized in efforts like RIF and OWL is not expressive enough for the real world. As one expert put it, if enterprise data integration in the 1980s was between a few databases, today it is more like between 1000 databases, which makes this matter similar to searching the web. How can one know in such a situation that the data being aggregated is in fact meaningfully aggregate-able?

Add to this the prevalence of unstructured data in the world and the need to mine it for actionable intelligence. Think of combining data from CRM, worldwide media coverage of own and competitive brands, and in-house emails for assessing organizational response to events on the market.

These are the actual use cases for which we need RDF at relational DW performance and scale. This is not limited to RDF and OWL profiles, since we fully believe that inference needs are more diverse. The reason why this is RDF and not SQL plus some extension of Datalog, is the widespread adoption of RDF and linked data as a data publishing format, with all the schema-last and open world aspects that have been there from the start.

Stay tuned for more news later this month!